Example
Lets add on to our example - evolving a simple function: finding the best values for y = ax + b where we want to find optimal values for a and b. We'll keep the previous inputs the same as before, but now we add diversity to the GeneticEngine.
import radiate as rd
# Define a fitness function that uses the decoded values
def fitness_function(individual: list[float]) -> float:
# Calculate how well these parameters fit your data
a = individual[0]
b = individual[1]
return calculate_error(a, b) # Your error calculation here
# Create a codec for two parameters (a and b)
codec = rd.FloatCodec.vector(
length=2, # We need two parameters: a and b
init_range=(-1.0, 1.0), # Start with values between -1 and 1
bounds=(-10.0, 10.0) # Allow evolution to modify the values between -10 and 10
)
# Use Boltzmann selection for offspring - individuals which
# will be used to create new individuals through mutation and crossover
offspring_selector = rd.BoltzmannSelector(temp=4)
# Use tournament selection for survivors - individuals which will
# be passed down unchanged to the next generation
survivor_selector = rd.TournamentSelector(k=3)
# Define the alterers - these will be applied to the selected offspring
# to create new individuals. They will be applied in the order they are defined.
alters = [
rd.GaussianMutator(rate=0.1),
rd.BlendCrossover(rate=0.8, alpha=0.5)
]
# Define the diversity measure
diversity = rd.HammingDistance() # or rd.EuclideanDistance() for continuous problems
# Create the evolution engine
engine = rd.GeneticEngine(
codec=codec,
fitness_func=fitness_function,
offspring_selector=offspring_selector,
survivor_selector=survivor_selector,
alters=alters,
diversity=diversity, # Add the diversity measure
species_threshold=0.5, # Default value
max_species_age=20, # Default value
# ... other parameters ...
)
# Run the engine
result = engine.run([rd.ScoreLimit(0.01), rd.GenerationsLimit(1000)])
use radiate::*;
// Define a fitness function that uses the decoded values
fn fitness_fn(individual: Vec<f32>) -> f32 {
let a = individual[0];
let b = individual[1];
calculate_error(a, b) // Your error calculation here
}
// This will produce a Genotype<FloatChromosome> with 1 FloatChromosome which
// holds 2 FloatGenes (a and b), each with a value between -1.0 and 1.0 and a bound between -10.0 and 10.0
let codec = FloatCodec::vector(2, -1.0..1.0).with_bounds(-10.0..10.0);
// Use Boltzmann selection for offspring - individuals which
// will be used to create new individuals through mutation and crossover
let offspring_selector = BoltzmannSelector::new(4.0);
// Use tournament selection for survivors - individuals which will
// be passed down unchanged to the next generation
let survivor_selector = TournamentSelector::new(3);
// Define some alters
let alters = alters![
GaussianMutator::new(0.1),
BlendCrossover::new(0.8, 0.5)
];
// Define the diversity measure
let diversity = HammingDistance::new(); // or EuclideanDistance::new() for continuous problems
let mut engine = GeneticEngine::builder()
.codec(codec)
.offspring_selector(offspring_selector)
.survivor_selector(survivor_selector)
.fitness_fn(fitness_fn)
.alterers(alters)
.diversity(diversity) // Add the diversity measure
.species_threshold(0.5) // Default value
.max_species_age(20) // Default value
// ... other parameters ...
.build();
// Run the engine
let result = engine.run(|generation| {
// Now because we have added diversity, the ecosystem will include species like such:
let species = generation.species().unwrap();
println!("Species count: {}", species.len());
generation.index() >= 1000 || generation.score().as_f32() <= 0.01
});